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Abstract—A mixed convection boundary layer on a horizontal plate for uniform wall temperature/uniform
heat flux is investigated using a computer extension of the perturbation series. The first 17 terms for the
uniform wall temperature case and the first ten terms for the uniform heat flux case are computed for a
Prandtl number ¢ = 0.72. The direct expansion is transformed by a Euler transform and other techniques.
The results for buoyancy aiding or opposing the main flow are presented. The present work predicts the
result to two digit accuracy for the entire domain of the streamwise coordinate. For uniform wall tempera-
ture, the maximum error is 5.983% for skin friction and 1.072% for heat transfer. For uniform heat flux,
the maximum error is 6.9% for skin friction and 1.9% for wall temperature.

1. INTRODUCTION

IN THE mixed convection on a horizontal plate, the
tangential component of buoyancy gives rise to a
hydrostatic pressure distribution across the boundary
layer which modifies the forced convection boundary
layer. As the boundary layer develops, the hydrostatic
pressure at the plate surface also increases with
increasing distance from the leading edge. The buoy-
ancy force can either aid or oppose the development
of the forced convection boundary layer depending
on whether the induced pressure gradient within the
boundary layer is favourable or adverse. More
specifically, for an upward facing heated horizontal
plate the density near the plate is less than the ambient
density, the hydrostatic pressure at the surface
decreases as the distance increases from the leading
edge giving rise to a negative pressure gradient which
accelerates the flow that results in the aiding flow
situation. Likewise, above a cool horizontal plate there
is an adverse pressure gradient. As the adverse pres-
sure gradient is due to buoyancy, this results in an
opposing flow situation. In the later situation if the
buoyancy effects are stronger, the opposition of the
forced and free convection effects leads to separation
of the flow. The characteristics of a mixed convection
boundary layer depends on the velocity of the forced
stream and the thermal conditions at the wall, which
later can be either a prescribed wall temperature or
prescribed heat flux at the wall.

The mixed convection on the horizontal surface due
to a uniform oncoming stream has been studied by
many workers. For buoyancy aiding flows, the results
are well documented but in opposing flow situations,

the investigations are largely incomplete. Mori [1]
considered the weakly buoyant flows by expanding
the variables in terms of a direct coordinate expansion
valid in a region near the leading edge of the plate. The
numerical solutions for the first-order perturbations
were reported for a Prandtl number of ¢ = 0.72. Spar-
row and Minkowycz [2] have corrected a minor sign
error in the analysis of ref. [1] and presented numerical
solutions for Prandtl numbers, ¢ = 0.01, 0.7 and 10.
A perturbation series in terms of the distance from
the leading edge apply as such to small buoyancy
effects [2-5]. Further, Hieber [5] also studied the
strongly buoyant flows in terms of an inverse coor-
dinate expansion and the solutions to the first three
terms in the inverse expansion were reported for a
Prandtl number of o = 0.72. The two expansions,
direct and inverse, do not describe the entire mixed
convection domain and fail in a domain where mixed
convection effects are moderate. For limiting Prandtl
numbers, the solutions of the equations for direct
and inverse coordinate expansions were reported by
Hieber [5] and Leal [6]. Approximate solutions of the
modified boundary layer equations were obtained by
Martynenko and Sokovishin [7] using an integral
method similar to that of Karman-Pohlhausen. Chen
et al. [8] and Mucoglu and Chen [9] have studied
the problem by local similarity and related methods.
Experimental results were reported by Wang [10]. The
numerical solutions were reported by Ramachandran
et al. [11]. Also, a vortex instability of the fluid flow
heated from below or cooled from above was studied
by Wang [10] and Moutsoglou et al. [12]. Reference
[13] considered the Navier-Stokes equations by
employing the method of series truncation. The
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numerical solutions to first truncated equations have
been reported for various Reynolds and Grashof
numbers.

The mixed convection problem for a prescribed
heat flux at the wall has been studied by Mucoglu
and Chen [9] and Schneider and Wasel [14]. The free
convection asymptote has been studied in ref. [15] by
employing boundary conditions at the wall implicitly
and in ref. {16} explicitly. In particular self-similar
solutions have been studied by Schneider [17] for a
wall temperature prescribed as an inverse square root
of the distance from the leading edge.

Recently, Raju et al. [18] and Schneider and Wasel
[14] have studied the mixed convection on a horizontal
plate by integrating the boundary layer equations by
finite difference schemes. The cases of prescribed wall
temperature and prescribed heat flux are considered.
Raju er al. [18] presented a formulation (see also ref.
[19]) where the entire mixed convection domain has
been studied through a single formulation resulting in
the smooth transition from one convection limit to
the other. They provided the solutions in the aiding
and opposing flow situations. For the opposing flow
sitnation velocity and temperature profiles are dis-
played graphically but shear stress and heat transfer
distribution along the plate are not given. Schneider
and Wasel [14] describe the solutions in the adverse
flow domain where streamwise gradient and heat
transfer approach infinity. They attribute this infinite
behaviour to the failure of the boundary layer equa-
tions. In a related problem of similar solutions for
mixed convection on a horizontal plate ref. [20] has
shown that the solutions are dual with a turning point
where the shear stress is still finite. This conclusion
was also supported from the solutions of de Hoog et
al. [21] and the work of Raju ef al. {18].

The present work deals with the extension of a
direct series to estimate several higher order terms for
the two cases of prescribed uniform wall temperature
and uniform heat flux at the wall. The first 17 terms
for the uniform wall temperature case and ten terms
for the uniform heat flux case have been obtained. It
is shown that the results of the direct series expansions
when transformed by the Euler transformation and
other techniques predict results correct to two decimal
places even in the asymptotic case of strongly buoyant
flows.

2. EQUATIONS OF MOTION

The boundary layer equations for mixed convection
flow over a horizontal semi-infinite flat plate under the
Boussinesq approximation representing conservation
of mass, momentum and energy are

u  Ov

5;+5;=0 1
u  du 1dp &*u
ua+05§-—ga+v5;3 (2)
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1 dp
— = g(T—T, 3
o 3y 9B( ) 3

8T 8T v o'T
The boundary conditions are
oT q
= T=T, T =R e ) =
u=70, WX} or e % at y

(Sa,b)
u-U,, T->T, as y- 0. (5¢c)

Here x is the coordinate along the plate measured
from the leading edge and y normal to it.  and v
are velocity components in the x- and yp-directions,
respectively. U, is the constant uniform velocity of
the free stream and T, the temperature of the free
stream. An integration of energy equation (4) over a
large control volume enclosing the leading edge gives
the total heat flux Q as

Q= PC}L wT-T,)dy. ®

3. ANALYSIS

3.1. Uniform wall temperature case

In the region near the leading edge of the plate, the
boundary layer is mainly governed by forced con-
vection flow and the buoyancy effects can be regarded
as perturbations. The appropriate variables are there-
fore Blasius variables defined by

dl = (VUcox)sz(is '1), T_ ch = ATG(éa ”)v
P= pUzG(cf,?]), AT = Tw_Tac- (7)

The variables & and # are defined by

U 1/2
n=y (';j;)

where Gr, and Re, are local Grashof and Reynolds
number, respectively, defined by

& =Gr./Re}”, (8a)

T,—T.,)x? U,
Gr, = BT ZTo)x’ g Usx gy
v v
The stream function, ¥, is defined as
i, o
ll—"—“a"; and U= —“b;; (9)

Substituting transformations (7)~(9) into boundary
layer equations (1)-(4) we obtain the following non-
similar equations :

S IG = (S~ o f T+ Gy (10)
G = £¢0 (b

1
~07 40 =360 0, —f:0"). 12
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Boundary conditions (5a) and (5¢) become
f(60) =f"(§,0)=0(£,00—-1=0
S 0)=1=0(S, ) =0.
The global heat flux condition (6) gives

(132)
(13b)

0= (pCI,AT\/(vax))J; f'0dn. (14

The positive and negative sign with the buoyancy
term in equation (11) represents buoyancy aiding and
opposing the main flow.

For weakly buoyant flows, ¢ is small and the vari-
ables can be expanded in power series as

©

S =

n=

) (£ fulm)

=]

GEm =Y (£8"G,(m

n=10

0Em =Y (2600 (159

Substituting expansions (15) in equations (10)—(12)
and equating various powers of ¢ we obtain the equa-
tions for successive approximations. The equations
for leading order (n = 0) are

CH3fofi’ =0, Gy=0  (l6ab)

1
—05'+13/o05 =0 an

fo0) = f5(0) = 0,(0)—1
= fi(0) =1 = ,(0) = 0.
Global heat flux condition (14) gives

(18)

0 = (C, AT (WU, %)) r fibodn.  (19)
0

Equations (16) and (17) are not coupled and the
momentum equation is the well-known Blasius equa-
tion. The equations for the next highest order per-
turbation (f,,8,) for n > 1 can be expressed in terms
of recurrence relations as

(n+1)

Mol = nfuli

n
O//fn+%r’0n—l_§Gn

ln—l
=5 Z,l for =+ 1 12] (20)

G;; = 071—1

1 1
Z07 4470~ dngse, + "3 1 g

@1

1 n—1
=5 X8 =+ 1) f0,_]. (22)
r=1
The boundary conditions for #» > 1 are

14(0) = £,(0) = 6,(0) = f7(0) = 0,(0) =0 (23)
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and integral heat flux condition for n > 1 is

© n—1

J\ (fn/GO +f0/9n + Z fr/9n~r)d,1 = 0. (24)
0 r=1

Equations (21) and (22) are decoupled by virtue of
equation (21) and can be solved successively.

3.2. Uniform heat flux case

In this case, the appropriate similarity trans-
formations in terms of forced convection variables are
defined by

2
l// = (VUaox) l/zf(za 7]), T- Too = %(11) 0(8’ 1’[)

U,
(25)
U 1/2
p=pUG¢&n), n=y (;f) (26)
where
E= <Ivﬂ}§) x. @7)

Based on equations (25)—(27), boundary layer equa-
tions (1)—(4) become

F7HIF G = E(fef —fef "+ Ge) (28)
G'= +2 9)
1 5
U 0 —3f0=C(f0:~f207).  (30)
The boundary conditions are

FE0)=f(E0=0(0+1=0,

fEo0)—1=0¢x0)=0 (3lab)
subject to the integral heat flux condition
Q= ("C—]gv‘i x) j 1704 (32)
0

The positive and negative sign in equation (29) is
indicative of buoyancy aiding and opposing flow situ-
ations.

For weakly buoyant flows,  is small and the vari-
ables in equations (28)—(30) can be expanded in
powers of & in a manner similar to equations (15) and
substituting these expansions into equations (28)—(30)
and equating various powers of £, we obtain the equa-
tions for successive approximations. The equations
for the leading order (n =0) approximations for
momentum and pressure are the same as equations
(16a) and (16b) and the energy equation is given by

105+ 41,05 17500 =0 €5
fol0) = f5(©) = 050) +1 =0,
So(0)—1 = 8,(0) =0. (34a,b)
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Global heat flux condition (32) gives

0= ("9 [ nman 09

0

The higher order approximations for n > 1 are ex-
pressed by recursive relations as

SRS =SS Fi ek DS ot s —nG,
SN VB
G, =0,_, 37
07 Ui (kD 150, 4 kD03~ 110

= 3+ Db F8 0] (Y)

The boundary conditions for n > 1 are

Ja0) = £(0) = 6,(0) = f,(c0) = 6,(0) =0 (39)

and the integral heat flux condition for # > 1 is the
same as that given by equation (24).

4. RESULTS AND DISCUSSIONS

The calculations of higher order perturbation
approximations in recurrence relations (20)—(24) for
small ¢ and equations (36)—(39) together with the
integral heat flux condition for small & are pro-
grammed as nested ‘DO’ loops.

4.1. Uniform wall temperature case
The results for skin friction and heat transfer rate
are given by
16

f7€,0) = Y a,(£2)

n=0

(40a)

16
0°(¢,0) = Y. bu(£&) (40b)
n=0
where the coefficients a,,b, are given in Table 1.

The positive and negative sign with & corresponds
to favourable and adverse buoyancy with respect to
the oncoming stream. Figure 1 displays Domb-Sykes
{22] plots, i.e. ratios a,/a,_, or b,/b,_, against 1/n.
The extrapolation to 1/n = 0 yields an estimate of the
radius of convergence |£,|. The Domb—Sykes plots of
series (40) shown in Fig. 1 do not appear to have
settled down and it is not easy to extrapolate the
points to get the radius of convergence. However,
the turning point studied earlier can be regarded as
representative of the nearest singularity. We adopt
£, = 0.057, as it is well known that a slight variation
in the value of &, does not affect much the results of
the Euler transformation (see Appendix A of ref. [27]).

For buoyancy aiding flow situations, the nearest
singularity on the negative real axis in the complex &-
plane, at £ = —¢&, can be mapped away to infinity by
the Euler transformation

s
E+¢&,

where £, is the radius of convergence.

As -, f7(0)~&Y and 0°(,0)~EY,
extracting the factors £** and ¢'° from series (40a)
and (40b), respectively, and recasting the series in
terms of variable Z defined by equation (41), we have

16

EVE0) = T 4,2

n=0

z (41)

(42a)

16

E7U0'(5,0) = ¥ B,z
0

n=

Coefficients A, and B, of the transformed series (42)
are given in Table 1. Series (42) are hopefully con-

(42b)

Table 1. Coefficients in the series for skin friction and heat transfer for mixed convection on a horizontal
plate with uniform wall temperature: a,, b,, low £ series (40) : 4,, B,, Eulerized series (42)

Skin friction

n a, A,

0 0.332057357E + 00 0.185220146E + 01
1 0.169711945E + 01 —0.571732799E + 00
2 —0.499843675E+01 —0.970145064E — 01
3 0.357306689E + 02 —0.425486865E — 01
4 —0.337330268E 403 ~0.248289643E - 01
5 0.368597704E + 04 —0.166257151E-01
6 —0.442052844E + 05 —0.120742679E —01
7 0.566285662E + 06 —0.925165160E —02
8 —0.762691768E +07 —0.736427483E —-02
9 0.106889482E + 09 —0.603235263E—02
10 —0.154752459E+ 10 —0.505414832E —02
11 0.230446382E + 11 —0.431090527E—02
12 —0.351496882E + 12 —0.371820982E—02
13 0.547711842E+13 —0.319018255E —02
14 —0.869853463E + 14 —0.260041362E — 02
15 0.140552127E+ 16 —0.172830028E - 02
16 —0.230726465E+17 —0.179503953E - 03

Heat transfer

b,

—0.295635290E + 00
—0.355730463E+ 00
0.158582043E +01
—0.122196806E + 02
0.118215763E+03
—0.130260244E + 04
0.156493787E 405
—0.200199785E + 06
0.268838190E + 07
—0.375359582E + 08
0.541229348E + 09
—0.802455605E + 10
0.121867303E+ 12
—0.189076999E + 13
0.299018215E + 14
—0.481154558E+ 15
0.786715016E+ 16

B,

—0.524301752E+ 00
0.689002473E—01
0.223135857E—01
0.117093884E—01
0.745357242E—02
0.526725798E —02
0.397409451E — 02
0.313579508E — 02
0.255622241E — 02
0.213600297E — 02
0.182003704E — 02
0.157535368E—02
0.138020602E — 02
0.121736515E —02
0.106843086E — 02
0.907266502E — 03
0.691037964E — 03
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FiG. 1. The Domb--Sykes plots for skin friction and heat transfer series (45) for mixed convection on a
horizontal flat plate with constant wall temperature: O, skin friction; *, heat transfer.

vergent for all values of Z from Z = 0 to 1, provided
there is no other singularity. The last partial sums of
series (42) at Z = 1 yield the value for skin friction,
ET35F7(E,0) = 1.043946, and for heat transfer rate
at the wall, £~'%0’(£,0) = —0.388196, whereas the
corresponding exact results of Rotem and Classen [23]
and Hieber [5] obtained from the study of strongly
buoyant flows (¢ - o) for skin friction and heat
transfer, respectively, are 0.97840 and —0.35741. This

shows that the last partial sums of transformed series
(42) overestimate the skin friction by 6.69% and heat
transfer by 8.61%.

The convergence of transformed series (42) can
further be improved by completing series (42) from
the analysis of the remainder. The remainder can be
adopted from the characteristics of the Domb-Sykes
plots: the inverse ratios 4,/4,_, or B,/B,_, against
1/n, displayed in Fig. 2. A line with slope 2/5 and

10
o8t
[ ]
o6l ¥ ag=2/5
*
An o4l °
An-l *
Bn o2 °
Bn-I
0}
-02k
-0-4 |-
I - I L 4 | 1 1
) 02 04 06 08 10
I/n

FiG. 2. The Domb-Sykes plots for Eulerized series (48) for skin friction and heat transfer for mixed
convection on a horizontal plate with constant wall temperature : @, skin friction ; *, heat transfer.
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Table 2. Coeflicients in the series for skin friction and heat
transfer for mixed convection on a horizontal plate with
uniform wall temperature : 4,, B,, completed Eulerized series

Skin friction Heat transfer

n A¥ B}

-1 0.318410446E —01 —0.122578752E + 00
0 0.182036041E+-01 —0.401722999E + 00
1 —0.558996381E 4+ 00 0.198687454E —01
2 —0.931935810E—01 0.760413530E—02
3 —0.405108596E —01 0.386434821E —02
4 —0.235043768E 01 0.235429631E —02
5 —0.156720121E~01 0.159577918E —02
6 —0.113430956E ~ 01 0.115929410E —02
7 —0.866671378E~02 0.883954760E —03
8 —0.688170113E 02 0.698454148E—03
9 —0.562484595E—02 0.567220883E —03

10 —0.470369257E—02 0.470884446E —03
11 —0.400505298E — 02 0.397911417E—03
12 —0.344804030E —02 0.340132021E—03
13 —0.294910821E—02 0.289299121E—03
14 —0.238344671E—02 0.233171434E—03
15 —0.153158361E—02 0.149964623E —03

intercept unity is also displayed in the same figure.
The figure shows that the line is in agreement except
for a few points for large #. Therefore, the remainder
can be taken proportional to (1—Z)¥? and the con-
stant of proportionality is determined by equating the
17 terms. On completing, the transformed series (42)

T. HussaIN and N. AFzZAL

leads to

I f(E,0) = 2-3/5[A*.(1—Z)2/5+ 5 A:Z"]

n=0

(43a)

£10(Z,0) = Z*”S[Btl(1~2)2“ > B:z"].
n=0

(43b)

Coefficients 4. and B} of the completed transformed
series (43) are given in Table 2, which are much
reduced in comparison to the original coefficients 4,
and B, of transformed series (42). The last partial
sums of the completed transformed series (43) for
Z =1 yield the value of the skin friction and heat
transfer at the wall as &~ ¥°f"(¢,0) = 1.03694 and
E-13597(&,0) = —0.361245. When compared to exact
results, this shows that the results obtained from the
completed transformed series (43) at Z = 1 (¢ - )
underestimate the skin friction by 5.98% and heat
transfer at the wall by 1.07%.

The results for skin friction and heat transfer at the
wall based on the completed transformed series (43)
are displayed in Figs. 3 and 4 against ¢. The asymp-
totes for small and large ¢ are also displayed in the
respective figures. Figures 3 and 4 show that the large
¢ asymptote for skin friction is reliable when & > 100
and for heat transfer when ¢ > 1000,

When the buoyancy opposes the main stream, series
(40) are of limited interest. As the nature and location

4-0

3-0

180

2:0

A

Q
0.0

FiG. 3. Favourable case: the comparison of skin friction for mixed convection on a horizontal flat plate
with constant wall temperature : C+ E, completed transformed series (49a) ; A, asymptotes for small and
large values of £.
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0.2

2
10 6!

F1G. 4. Favourable case: the comparison of heat transfer for mixed convection on a horizontal flat plate
with constant wall temperature : C + E, completed transformed series (49b) ; A, asymptotes for small and
large values of &.

of the nearest singularity is not known, it is not pos-
sible to improve the series by the method of sub-
traction of singularities. Guided by the earlier works
on the subject [20, 21], dual solutions are expected. A
good insight into the structure of the dual solutions
can hopefully be gained by inverting series (40) [24].
The method of inverting the series is described as
follows.
For a given series

y=xl+l Z %3('

44
n=0
its inversion is given by
2 B, _ m+1
=L o= am) @
where coefficients f,, are given by [26]
1 m
= H == — —_—
ﬂo o, ﬁm magﬂ;] (n” m+n)anﬁm~n-
(46)
Using the above, series (40) yields
16 ”__ a n
=S (]
n=1
16 0 r__ b 7
()= ¥ 4, (T> (47b)
n=1 1

where " = f"(£,0), 0" = 87(&,0) and the coefficients
¢, and d, are given in Table 3. The results for skin
friction and heat transfer are displayed against £, the
mixed convection parameter in Fig. 5 show the dual

HMT 31:12-8

solutions and associated turning point. The skin fric-
tion and heat transfer decrease with increasing & until
the turning point is approached. The results for skin
friction show that the turning point is around
£, = 0.057 whereas those for heat transfer show a
slightly smaller value. The slight difference in the
location of the turning point is due to different rates
of convergence of the two series. Better solutions
around the turning point can be obtained from an
asymptotic analysis in the neighbourhood of the turn-
ing point or from solutions of full partial differential

Table 3. Coefficients in the inverted series (47) for skin fric-
tion and heat transfer for mixed convection on a horizontal
plate with uniform wall temperature

Skin friction Heat transfer

n C, d,

1 0.100000000E 401 0.100000000E +01
2 0.294524746E + 01 0.445792699E + 01
3 —0.370474957E + 01 0.539527244E + 01
4 0.164668560E + 02 0.961257557E +01
5 —0.111407057E+ 03 —0.397975081E+02
6 0.933215908E + 03 0.335705186E + 03
7 —0.889355797E+04 —0.303887731E+04
8 0.926672385E+ 05 0.297345384E 405
9 —0.102028465E + 07 —0.293451594E + 06
10 0.116396648E + 08 0.297271786E+07
11 —0.150803586E + 09 —0.493052408E + 08
12 0.174232427E+10 0.149958878E + 09
13 —0.243618618E+ 11 —0.914492188E+ 10
14 0.306394790E + 12 0.998754352E+ 10
15 —0.432396958E + 13 —0.128509069E + 13
16 0.592994893E + 14 0.834867382E+ 13
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=8(g0)

f"( E,O)

0 0.02

0.08

Fi1G. 5. Adverse case: the characteristics of mixed convection on a horizontal flat plate with constant wall
temperature: (£, 0), skin friction; 8'(¢, 0), heat transfer rate.

equations. The realization of the lower branch solu-
tion follows similar arguments as found in ref. [20].

4.2, Uniform heat flux case
The results for skin friction and wall temperature
are
9

€0 = ) a,(+ &) (48a)
0(€,0) = X (&) (48b)

Coefflicients a, and b, are given in Table 4. The Domb-
Sykes plots a,/a,_, or b,/b,_, against 1/n are shown
in Fig. 6. The extrapolation to 1/n = 0 leads to an
intercept of 50 and a slope of a = 1. The reciprocal
of the intercept gives the radius of convergence
&, =0.02.

To improve the convergence of series (48) for a
favourable case the series is recast in terms of the

Euler variable defined by equation (41)

9

EfE0) =Y 4,27 (49a)
n=0
E1sg(¢,0) = i B,Z"* 1S, (49b)

n=0

Coefficients 4, and B, are given in Table 4. Series
(49a) and (49b) are hopefully convergent for Z — 1
(& - ), provided there is no other singularity. The
last partial sums of series (49) yield the value of skin
friction, &~ Y2f"(&,0) = 1.57159897 and wall tem-
perature £Y°0(&,0) = 1.65679325, whereas the pure
free convection asymptotes studied in ref. [16] are
f77(0) = 1.52664 and 6(0) = 1.90551.

The last partial sums of transformed series (49)
overestimate the skin friction by 2.945% and under-
estimate the temperature at the wall by 13.0%
approximately.

Table 4. Coefficients in the series for skin friction and wall temperature for mixed convection on a horizontal
plate with uniform heat flux: a,, b,, low & series (48) : 4, B,, Eulerized series (49)

Skin friction

Wall temperature

n a, A, b, B,
0.332057357E+00 0.234800009E + 01 0.243978834E + 01 0.127113148E+ 01
0.442016066E + 01 ~—0.548894928E + 00 —0.551946354E+01 0.154342363E +00

—0.440842429E + 02 —-0.105636522E + 00 0.795963325E+ 02 0.730717581E—01
0.952863646E +03 ~0.454670821E—01 —0.176440796E + 04 0.451503156E 01
—0.268694008E + 05 —0.258093958E —01 0.482950524E + 05 0.315747788E - 01
0.874048752E + 06 —0.168314969E — 01 —0.150434767E + 07 0.237432708E —01

—0.311838521E+08
0.118785028E+ 10
—0.475750523E+11
0.198329148E+ 13

DOO I RWN~O

—0.119450592E —01
~0.898301044E — 02
~0.706259901E—02
~0.577103815E—02

0.512430622E 408
—0.186519388E + 10
0.715184452E+ 11
—0.286090506E + 13

0.187314748E—-01
0.152914158E 01
0.128084067E —01
0.109479986E —01
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F1G. 6. The Domb-Sykes plots for skin friction and wall temperature series (56) for mixed convection on
a horizontal plate with constant heat flux: O, skin friction; *, temperature.

The convergence of series (49) can hopefully be
further improved by completing series (49) from the
analysis of the remainder. The Domb-Sykes plots of
the inverse ratios 4,/A4,_, or B,/B,_, against 1/n on
extrapolation to 1/n =0 gives the radius of con-
vergence as unity and the slope as a =1/3. The
method of subtraction of singularity leads to

g-urprE,0) = Z“/Z[Atl(l——Z)‘/3+ f A,,*Z"]

n=0

8
2o, 0) =z "¢ [811(1 ~2)"P+ 3, B:z"].

n=0

(50b)

Coefficients 4* and B¥ are given in Table 5. The last
partial sums of the transformed—completed series (50)
at Z=1 yield the value of skin friction,
E-12p(E 0) = 1.421552, and wall temperature,
2169(2 0) = 1.941441, showing that the result pre-
dicted from series (50) as & — oo underestimate the

(50a) skin friction by 6.9% and overestimate the tem-
1.0
® Skin-Friction
20, o Temperature
.. o
o
L4 o
[ ]
o
L
0.5 |~
An . °
An-|
Bn a=1/3
Bn-| .
S
o b
—o2s | |
02 1 ! i ! )
o2 0.4 0.6 0.8 1.0
1/n

FiG. 7. The Domb-Sykes plots of Eulerized series

(58) for skin friction and temperature for mixed

convection on a horizontal flat plate with constant heat flux.
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Table 5. Coefficients in the series for skin friction and wall
temperature for mixed convection on a horizontal plate with
uniform heat flux: 4,, B,, completed Eulerized series (50)

Skin friction Wall temperature

n A} B}
- 0.427849286E + 00 ~—0.811655245E+ 00
0.192015080E + 01 0.208278672E + 01
—0.406278495E + 00 ~—0.116209393E 400

—0.580977117E—01
—0.190566321E—01
—0.820242920E - 02
—0.391972143E—-02
—0.190256719E — 02
—0.853374066E —03
—0.287902042E — 03

—0.171121593E—-01
—0.495186046E — 02
—0.182667178E—02
—0.751126231E—03
—0.319722850E — 03
—0.130982270E—03
—0.435916731E—04

[2eBE W= R R e N ==

T. HussaiN and N. AFzAL

perature at the wall by 1.9%. The relatively large
error in skin friction results may be due to the limited
number of terms (ten terms) considered. The results
for skin friction and temperature at the wall based on
the completed—transformed series (50) are displayed
in Figs. 8 and 9, respectively. The asymptotes for small
and large € are also displayed in the respective figures.
Figures 8 and 9 show that the large & asymptote for
skin friction is reliable when & > 50 and for tem-
perature when & > 1000.

When the buoyancy opposes the main stream, the
negative sign in series (48) is considered. In this case
the nearest singularity is located on the positive real
axis at &, = 0.02.

6.0

4.0
"

(£ ,0)
2.0

-2
10

Fi1G. 8. Favourable case : the comparison of skin friction for mixed convection on a horizontal flat plate
with constant heat flux: C+E, completed transformed series (59a); A, asymptotes for small and large
values of &.

3.0
2.0
A
6(&,0)
1.0 |-
[o] 1 L 1. _—

‘=2 ~1 0 ¥ 2 3
10 10 10 10 {e} [{¢]

A

3

F1G. 9. Favourable case: the comparison of wall temperature for mixed convection on a horizontal flat
plate: C+E, completed transformed series (59b) ; A, asymptotes for small and large values of &.
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F1G. 10. Adverse case : the characteristics of mixed convection on a horizontal flat plate with constant heat
flux : F(&,0), skin friction at the wall; 8(Z, 0), temperature at the wall.

Inverting series (48) we obtain

n=Sa(7e)
{0 =¥ 4, (0—;‘1—’3) (51b)

where 17 = f”(Z,0), 0 = 8(£,0) and the coefficients
¢, and d, are given in Table 6.

The results from series (51) for skin friction and
wall temperature are displayed against £ in Fig. 10.
The figure clearly shows the duality of solution and
the associated turning point. The two series (5la)
and (51b) give slightly different values for the turning
point which may be due to the rate of convergence of
the series, i.e. &, = 0.0203.

Table 6. Coefficients in the inverted series (51) for skin fric-
tion and wall temperature for mixed convection on a hori-
zontal plate with uniform heat flux

Skin friction Wall temperature

n é, ,,

i 0.100000000E + 01 0.100000000E +-01
2 0.997344809E+01 0.144210269E+ 02
3 —0.166328409E 4+ 02 0.962618465E +02
4 0.289117323E 403 0.695509689E +03
5 —0.634773406E + 04 0.520628603E + 03
6 0.165002917E 406 0.685086333E +05
7 —0.456090567E +07 —0.124509146E + 07
8 0.143747688E + 09 0.429982094E + 08
9 —0.460895244E+ 10 —0.104170860E + 10

The present results at the turning point are
&, =0.02, f7(¢,0) = 0.18 for ¢ = 0.72 whereas the
corresponding values from ref. [14] are & = 0.0246,
f(&0)=0.1938 for o=1, and &=0.0155,
f(E,0) = 0.1515 for ¢ = 0.5. Therefore, the results
for the uniform heat flux case are largely in agreement
with ref. [14] in the neighbourhood of the turning
point.

Acknowledgement—The authors are thankful to the referee
for some helpful comments.
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CONVECTION MIXTE A COUCHE LIMITE POUR UN ECOULEMENT UNIFORME SUR
UN PLAN HORIZONTAL

Résumé—La convection mixte a couche limite sur une plaque horizontale pour un flux thermique ou une
température uniforme est étudiée numériquement en utilisant une série de perturbation. Les 17 premiers
termes pour le cas de température pariétale uniforme et les 10 premiers termes pour le cas du flux uniforme
sont calculés pour un nombre de Prandtl ¢ = 0,72. Le développement direct est traité par la transformée
d’Euler et d’autres techniques. Les résultats sont présentés pour la convection naturelle aidant ou con-
trariant I’écoulement principal. Pour la température pariétale, l'erreur maximale est 5,983% pour le
frottement et 1,072% pour le transfert de chaleur. Pour le flux thermique uniforme, ’erreur maximale est
6,9% pour le frottement et 1,9% pour la température de paroi.

GRENZSCHICHTSTROMUNG IN MISCH-KONVEKTION AN EINER
WAAGERECHTEN PLATTE IN EINER GLEICHFORMIGEN HAUPTSTROMUNG

Zusammenfassung—Die Grenzschichtstrdmung in Mischkonvektion an einer waagerechten Platte wird
fiir die Fille konstanter Wandtemperatur/konstanter Wirmestromdichte mit Hilfe eines erweiterten
Stérungsansatzes untersucht. Fir eine Prandtl-Zahl ¢ = 0,72 werden bei konstanter Wandtemperatur die
ersten 17 Terme, bei konstanter Warmestromdichte die ersten 10 Terme berechnet. Die direkte Entwicklung
wird mit Hilfe der Euler-Transformation und anderer Techniken transformiert. Ergebnisse fiir gleich- und
gegengerichteten Auftrieb (beziiglich der Hauptstromung) werden vorgestellt. Die Genauigkeit ist im
gesamten StrOmungsgebiet zweistellig. Fiir konstante Wandtemperatur betrigt der maximale Fehler bei
der Berechnung der Wand-Schubspannung 5,983%, beim Warmeiibergang 1,072% ; fiir konstante Wirme-
stromdichte 6,9% bzw. 1,9%.

CMEIMIAHHOKOHBEKTUBHBIA TIOFPAHUYHEIN CJION HA TOPU3OHTAJILHON
MJIACTHUHE B OMHOPOJHOM I10TOKE

AnnoTamus—CMEIIaHHOKOHBEKTHBHBIA NOTPaHHYHBbIA CJIOH HAa TOPH3OHTAJNILHOH NNACTHHE AJIA OOHO-
POIHBIX TEMNEPATYPhI CTEHKH H TEMIOBOro NOTOKA HCCHACAYETCS PA3JIOXKCHHEM B PAXBI MO BO3IMYILE-
HHAM ¢ ucnosib3oBaHHeM O3BM. Ilepsoie 17 uneHoB g Ciyyas OJHOPDOOHOR TeMIEPAaTyphl CTEHKH H
nepsbie 10 wieHOB JUTs ClIy4as OJHOPOAHOTO TEIMUIOBOTO NMOTOKA PACCHHTHIBAIOTCA MJIA yucha [IpanaTis
o = 0.72. [Ipsamoe pa3jiokKeHHEe B PAX NPOBOAMTCH € NOMOIIbIO NMpeoOpazoBanus Dinepa H APYrHMHU
cnocobamn. [IpencrapieHs! pe3ynbTaTl IS CHNYTHOrO M NPOTHBONOJIOKHOIO HalpaBJieHHA BTOpUY-
HOTO M OCHOBHOTO TeYeHHs. Pe3ynbTaThl JaHBI ¢ TOYHOCTBIO O ABYX 3Havaummx mudp Bo Beelt o6aactu
HU3MEHEHHs] HanpaBJieHHOH BOOJIb MOTOKA KOOPAHHATHL B ciywae onHoponHo#l TemmepaTyphi CTEHKH
MaKCHMaJIbHasl MOTPEUIHOCTb cocTaBnsia 5.983% mns moBepxHOCTHOro TpeHus M 1.072% nans Bean-
YHHbI TEIUIOOTHAYH. B ciyYae OAHOPOOHOIO TEIUIOBOrO MOTOKa MakCHMAaJbHas MOTPEIIHOCTH PaBHa
6.9% AN NOBEPXHOCTHOTO TpeHHA H 1.9% [ TeMIepaTyphbl CTEHKH.



